Identification of diagnostic methods for African swine fever: A systematic literature review

Authors

DOI:

https://doi.org/10.36096/ijbes.v6i6.647

Keywords:

African swine fever, diagnosis, diagnostic methods, laboratory tests, veterinary medicines.

Abstract

This review emphasizes the urgent need for effective diagnostic strategies for African swine fever (ASF), a serious disease affecting pig populations worldwide. The aim of the review is to analyze the existing research on ASF diagnostics through a comprehensive literature review, focusing on different diagnostic approaches, including clinical assessments, PCR tests, ELISA, rapid tests and epidemiological models. It examines their sensitivity, specificity and overall performance, addressing challenges such as the varying sensitivity of tests and cross-reactivity. The review highlights both the strengths and limitations of current methods and suggests areas for improvement and standardization. Recommendations are made for future research and the development of innovative diagnostic tools to improve ASF surveillance and control. This study makes a practical contribution by providing a detailed assessment of ASF diagnostic methods from which veterinary scientists and practitioners can benefit. Theoretical contributions include the identification of gaps in ASF diagnostics and the refinement of discussions on diagnostic accuracy and reliability. These findings are consistent with the journal’s focus on infectious diseases and veterinary research and support progress in veterinary medicine and animal welfare.

Downloads

Download data is not yet available.

References

Aira, C., González-García, G., Martínez-Cano, J., de la Roja, N., Giammarioli, M., Feliziani, F., Šteingolde, Ž., Buitkuviene, J., Václavek, P., Gliši?, D., & Gallardo, C. (2024). Simultaneous detection of antigen and antibodies of African swine fever in a novel combo lateral flow assay. Vaccines, 12(3), 307. DOI: https://doi.org/10.3390/vaccines12030307

Atkins, S., Lewin, S., Smith, H., Engel, M., Fretheim, A., & Volmink, J. (2008). Conducting a meta-ethnography of qualitative literature: Lessons learnt. BMC Medical Research Methodology, 8, 1-10. DOI: https://doi.org/10.1186/1471-2288-8-21

Barroso, J., Gollop, C. J., Sandelowski, M., Meynell, J., Pearce, P. F., & Collins, L. J. (2003). The challenges of searching for and retrieving qualitative studies. Western Journal of Nursing Research, 25(2), 153-178. DOI: https://doi.org/10.1177/0193945902250034

Blome, S., Gabriel, C., & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research, 173(1), 122-130. DOI: https://doi.org/10.1016/j.virusres.2012.10.026

Cavalera, S., Colitti, B., De Mia, G. M., Feliziani, F., Dei Giudici, S., Angioi, P. P., D'Errico, F., Scalas, D., Scollo, A., Serra, T., & Chiarello, M. (2023). Development of molecular and antigenic-based rapid tests for the identification of African swine fever virus in different tissues. Talanta, 258, 124443. DOI: https://doi.org/10.1016/j.talanta.2023.124443

Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews (Vol. 2). Sage.

de León, P., Bustos, M. J., & Carrascosa, A. L. (2013). Laboratory methods to study African swine fever virus. Virus Research, 173(1), 168-179. DOI: https://doi.org/10.1016/j.virusres.2012.09.013

Dixon, L. K., Stahl, K., Jori, F., Vial, L., & Pfeiffer, D. U. (2020). African swine fever epidemiology and control. Annual Review of Animal Biosciences, 8, 221-246. DOI: https://doi.org/10.1146/annurev-animal-021419-083741

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. Information and Software Technology, 50(9-10), 833-859. DOI: https://doi.org/10.1016/j.infsof.2008.01.006

Gallardo, C., Fernández-Pinero, J., & Arias, M. J. V. R. (2019). African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Research, 271, 197676. DOI: https://doi.org/10.1016/j.virusres.2019.197676

Gallardo, C., Soler, A., Nieto, R., Carrascosa, A. L., De Mia, G. M., Bishop, R. P., Martins, C., Fasina, F. O., Couacy-Hymman, E., Heath, L., & Pelayo, V. (2013). Comparative evaluation of novel African swine fever virus (ASF) antibody detection techniques derived from specific ASF viral genotypes with the OIE internationally prescribed serological tests. Veterinary Microbiology, 162(1), 32-43. DOI: https://doi.org/10.1016/j.vetmic.2012.08.011

Go, Y. Y., Ho, J. H., Tam, K. W., Kamali, M., Zhang, Y., Lau, C. C., Li, S. H., Wilson, M. T., Guo, Z., Li, R., & Gu, G. (2023). Investigation of the first African swine fever outbreak in a domestic pig farm in Hong Kong. Transboundary and Emerging Diseases. DOI: https://doi.org/10.1155/2023/1720474

Goatley, L. C., Freimanis, G., Tennakoon, C., Foster, T. J., Quershi, M., Dixon, L. K., Batten, C., Forth, J. H., Wade, A., & Netherton, C. (2024). Full genome sequence analysis of African swine fever virus isolates from Cameroon. PLOS One, 19(3), e0293049. DOI: https://doi.org/10.1371/journal.pone.0293049

He, Q., Yu, D., Bao, M., Korensky, G., Chen, J., Shin, M., Kim, J., Park, M., Qin, P., & Du, K. (2020). High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence-based point-of-care system. Biosensors and Bioelectronics, 154, 112068. DOI: https://doi.org/10.1016/j.bios.2020.112068

Jalali, S., & Wohlin, C. (2012, September). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 29-38). DOI: https://doi.org/10.1145/2372251.2372257

Higgins, J. P. T. (2008). Cochrane Handbook for Systematic Reviews of Interventions. http://www.cochrane-handbook.org DOI: https://doi.org/10.1002/9780470712184

Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering.

Kvale, S. (1995). The social construction of validity. Qualitative Inquiry, 1(1), 19-40. DOI: https://doi.org/10.1177/107780049500100103

Liu, H. C., Liu, R. C., Hu, M. R., Yang, A. B., Wu, R. H., Chen, Y., Zhang, J., Bai, J. S., Wu, S. B., Chen, J. P., & Long, Y. F. (2024). Development of high concentration labeled colloidal gold immunochromatographic test strips for detecting African swine fever virus p30 protein antibodies. Heliyon, 10(3). DOI: https://doi.org/10.1016/j.heliyon.2024.e25214

Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction. Applied Soft Computing, 27, 504-518. DOI: https://doi.org/10.1016/j.asoc.2014.11.023

Masujin, K., Kitamura, T., Kameyama, K. I., Okadera, K., Nishi, T., Takenouchi, T., Kitani, H., & Kokuho, T. (2021). An immortalized porcine macrophage cell line competent for the isolation of African swine fever virus. Scientific Reports, 11(1), 4759. DOI: https://doi.org/10.1038/s41598-021-84237-2

Mazloum, A., van Schalkwyk, A., Shotin, A., Igolkin, A., Shevchenko, I., Gruzdev, K. N., & Vlasova, N. (2021). Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens, 10(5), 521. DOI: https://doi.org/10.3390/pathogens10050521

Milton, A. A. P., Das, S., Momin, K. M., Prasad, M. C. B., Khan, S., Priya, G. B., Ghatak, S., Sen, A., & Baruah, K. K. (2024). Development of a novel sensitive single-tube nested PCR assay for the detection of African swine fever virus. Archives of Virology, 169(5), 107. DOI: https://doi.org/10.1007/s00705-024-06037-z

Muzykina, L., Barrado-Gil, L., Gonzalez-Bulnes, A., Crespo-Piazuelo, D., Cerón, J. J., Alonso, C., & Montoya, M. (2024). Overview of modern commercial kits for laboratory diagnosis of African swine fever and swine influenza A viruses. Viruses, 16(4), 505. DOI: https://doi.org/10.3390/v16040505

Njau, E. P., Domelevo Entfellner, J. B., Machuka, E. M., Bochere, E. N., Cleaveland, S., Shirima, G. M., Kusiluka, L. J., Upton, C., Bishop, R. P., Pelle, R., & Okoth, E. A. (2021). The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Scientific Reports, 11(1), 13081. DOI: https://doi.org/10.1038/s41598-021-92593-2

Oura, C. A. L., Edwards, L., & Batten, C. A. (2013). Virological diagnosis of African swine fever—Comparative study of available tests. Virus Research, 173(1), 150-158. DOI: https://doi.org/10.1016/j.virusres.2012.10.022

Pedrera, M., Soler, A., Simón, A., Casado, N., Pérez, C., García-Casado, M. A., Fernández-Pacheco, P., Sánchez-Cordón, P. J., Arias, M., & Gallardo, C. (2024). Characterization of the protective cellular immune response in pigs immunized intradermally with the live attenuated African swine fever virus (ASFV) Lv17/WB/Rie1. Vaccines, 12(4), 443. DOI: https://doi.org/10.3390/vaccines12040443

Penrith, M. L., van Emmenes, J., Hakizimana, J. N., Heath, L., Kabuuka, T., Misinzo, G., Odoom, T., Wade, A., Zerbo, H. L., & Luka, P. D. (2024). African swine fever diagnosis in Africa: Challenges and opportunities. Pathogens, 13(4), 296. DOI: https://doi.org/10.3390/pathogens13040296

Pikalo, J., Deutschmann, P., Fischer, M., Roszyk, H., Beer, M., & Blome, S. (2021). African swine fever laboratory diagnosis—Lessons learned from recent animal trials. Pathogens, 10(2), 177. DOI: https://doi.org/10.3390/pathogens10020177

Qi, C., Zhang, Y., Wang, Z., Li, J., Hu, Y., Li, L., Ge, S., Wang, Q., Wang, Y., Wu, X., & Wang, Z. (2023). Development and application of a TaqMan-based real-time PCR method for the detection of the ASFV MGF-R gene. Diagnostics and Detection of African Swine Fever Virus, 132. DOI: https://doi.org/10.3389/fvets.2023.1093733

Qiu, Z., Li, Z., Yan, Q., Li, Y., Xiong, W., Wu, K., Li, X., Fan, S., Zhao, M., Ding, H., & Chen, J. (2021). Development of diagnostic tests provides technical support for the control of African swine fever. Vaccines, 9(4), 343. DOI: https://doi.org/10.3390/vaccines9040343

Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Systematic Reviews, 10, 1-19. DOI: https://doi.org/10.1186/s13643-020-01542-z

Richens, J. G., Lee, C. M., & Johri, S. (2020). Improving the accuracy of medical diagnosis with causal machine learning. Nature Communications, 11(1), 3923. DOI: https://doi.org/10.1038/s41467-020-17419-7

Robson, C. (2011). Real World Research (3rd ed.). Hoboken.

Sánchez?Vizcaíno, J. M., Laddomada, A., & Arias, M. L. (2019). African swine fever virus. In Diseases of Swine (pp. 443-452). DOI: https://doi.org/10.1002/9781119350927.ch25

Sandelowski, M., & Barroso, J. (2002). Reading qualitative studies. International Journal of Qualitative Methods, 1(1), 74-108. DOI: https://doi.org/10.1177/160940690200100107

Schwarz, N. (1999). Self-reports: How the questions shape the answers. American Psychologist, 54(2), 93. DOI: https://doi.org/10.1037//0003-066X.54.2.93

Sereda, A. D., Namsrayn, S., Balyshev, V. M., Vlasov, M. E., Sindryakova, I. P., Koltsova, G., & Kolbasov, D. V. (2023). Seroimmunotyping of African swine fever virus. Frontiers in Microbiology, 14, 1225587. DOI: https://doi.org/10.3389/fmicb.2023.1225587

Shi, C., Wang, Q., Liu, Y., Wang, S., Zhang, Y., Liu, C., Hu, Y., Zheng, D., Sun, C., Song, F., & Yu, X. (2024). Generation of high-quality African swine fever virus complete genome from field samples by next-generation sequencing. Viruses, 16(2), 312. DOI: https://doi.org/10.3390/v16020312

Singh, J. P. (2013). Predictive validity performance indicators in violence risk assessment: A methodological primer. Behavioral Sciences & the Law, 31(1), 8-22. DOI: https://doi.org/10.1002/bsl.2052

Tesfagaber, W., Wang, W., Wang, L., Zhao, R., Zhu, Y., Li, F., Sun, E., Liu, R., Bu, Z., Meng, G., & Zhao, D. (2024). A highly efficient blocking ELISA based on p72 monoclonal antibody for the detection of African swine fever virus antibodies and identification of its linear B cell epitope. International Journal of Biological Macromolecules, 131695. DOI: https://doi.org/10.1016/j.ijbiomac.2024.131695

Toye, F., Seers, K., Allcock, N., Briggs, M., Carr, E., & Barker, K. (2014). Meta-ethnography 25 years on: Challenges and insights for synthesising a large number of qualitative studies. BMC Medical Research Methodology, 14, 1-14. DOI: https://doi.org/10.1186/1471-2288-14-80

Vlasova, N. N., Varentsova, A. A., Shevchenko, I. V., Zhukov, I. Y., Remyga, S. G., Gavrilova, V. L., Puzankova, O. S., Shevtsov, A. A., Zinyakov, N. G., & Gruzdev, K. N. (2014). Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from the 2013-year Russian Federation. DOI: https://doi.org/10.9734/BMRJ/2015/12941

Zhang, C., Li, S., Zhang, M., Li, Y., Gimenez-Lirola, L. G., Li, B., & Li, W. (2023). Diagnostics and detection of African swine fever virus. Frontiers in Veterinary Science, 10, 1195138. DOI: https://doi.org/10.3389/fvets.2023.1195138

Downloads

Published

2024-12-17

How to Cite

Lububu, S., & Twum-Darko, M. (2024). Identification of diagnostic methods for African swine fever: A systematic literature review. International Journal of Business Ecosystem & Strategy (2687-2293), 6(6), 187–202. https://doi.org/10.36096/ijbes.v6i6.647

Issue

Section

Interdisciplinary Studies in Business Ecosystem