Efficient bankruptcy prediction and its role for a more resilient Alpine tourism
DOI:
https://doi.org/10.36096/ijbes.v7i1.716Keywords:
tourism, bankruptcy, SMEs, Risk Management, ResilienceAbstract
This paper examines the impact of selected variables on the value creation of tourism enterprises in Western Austria (Salzburg, Tyrol, and Vorarlberg) with the objective of developing an insolvency prediction model for Alpine tourism businesses. This study specifically highlights practical applications for business owners, policymakers, and financial institutions, providing strategies to mitigate bankruptcy risks in the tourism sector. The objective of this study is to address existing gaps in the literature regarding the early detection of insolvency in the tourism sector, particularly in German-speaking regions. To this end, a hybrid analytical method is employed, combining quantitative statistical approaches with sector-specific contextual analysis. A dataset comprising tourism firms was divided into two groups, namely solvent and insolvent, with a view to identifying significant explanatory variables influencing insolvency risks. The primary findings indicate that enterprise size, company age, and debt levels (as indicated by the equity ratio) are significant risk factors for insolvency. Furthermore, the results suggest that small and medium-sized enterprises (SMEs) are particularly vulnerable to financial crises. Finally, the findings demonstrate that macroeconomic structures and sectoral effects significantly impact insolvency probabilities. These findings emphasise the necessity for the development of early warning systems that are tailored to the specific requirements of SMEs in Alpine tourism.This research is particularly pertinent in light of the rising insolvency rates in the tourism industry and the lack of comprehensive official statistics, which impede effective crisis management. By addressing these challenges, the study contributes to the development of targeted risk management and intervention strategies to enhance the resilience of tourism enterprises in the region.
Downloads
References
Agarwal, V., & Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8), 1541–1551. https://doi.org/10.1016/j.jbankfin.2007.07.014 DOI: https://doi.org/10.1016/j.jbankfin.2007.07.014
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt (3rd ed.). Wiley Finance: v.289. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118267806 DOI: https://doi.org/10.1002/9781118267806
Altman, E. I., & Sabato, G. (2007). Modelling credit risk for SMEs: Evidence from the U.S. market. Abacus, 43(3), 332–357. https://doi.org/10.1111/j.1467-6281.2007.00234.x DOI: https://doi.org/10.1111/j.1467-6281.2007.00234.x
Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z-score model. Journal of International Financial Management & Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053 DOI: https://doi.org/10.1111/jifm.12053
Altman, E. I., Sabato, G., & Wilson, N. (2010). The value of non-financial information in SME risk management. The Journal of Credit Risk, 6(2), 95–127. https://doi.org/10.21314/JCR.2010.110 DOI: https://doi.org/10.21314/JCR.2010.110
Andersson, U., Forsgren, M., & Holm, U. (2002). The strategic impact of external networks: Subsidiary performance and competence development in the multinational corporation. Strategic Management Journal, 23(11), 979–996. https://doi.org/10.1002/smj.267 DOI: https://doi.org/10.1002/smj.267
Andric, M., & Kammerlander, N. (2017). Wozu Controlling? Control Management Review, 61, 8–15. https://doi.org/10.1007/s12176-016-0110-z DOI: https://doi.org/10.1007/s12176-016-0110-z
Andrikopoulos, P., & Khorasgani, A. (2018). Predicting unlisted SMEs' default: Incorporating market information on accounting-based models for improved accuracy. The British Accounting Review, 50(5), 559–573. https://doi.org/10.1016/j.bar.2018.02.003 DOI: https://doi.org/10.1016/j.bar.2018.02.003
Arnold, D., & Furmans, K. (2009). Materialfluss in Logistiksystemen. Berlin-Heidelberg: Springer Verlag. https://doi.org/10.1007/978-3-662-60388-8 DOI: https://doi.org/10.1007/978-3-642-01405-5
Aziz, A., & Lawson, G. H. (1989). Cash flow reporting and financial distress models: Testing of hypotheses. Financial Management, 18(1), 55–63. https://www.jstor.org/stable/3665698 DOI: https://doi.org/10.2307/3665698
Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63–93. https://doi.org/10.1016/j.bar.2005.09.001 DOI: https://doi.org/10.1016/j.bar.2005.09.001
Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108 DOI: https://doi.org/10.1177/014920639101700108
Barreda, A. A., Kageyama, Y., Singh, D., & Zubieta, S. (2017). Hospitality bankruptcy in United States of America: A multiple discriminant analysis-logit model comparison. Journal of Quality Assurance in Hospitality & Tourism, 18(1), 86–106. https://doi.org/10.1080/1528008X.2016.1169471 DOI: https://doi.org/10.1080/1528008X.2016.1169471
Basile, G. (2012). Developments in studies on the relationship between firm and consumer: A structurationist view. Customer-Centric Marketing Strategies: Tools for Building Organizational Performance, 1–16. https://doi.org/10.4018/978-1-4666-2524-2.ch001 DOI: https://doi.org/10.4018/978-1-4666-2524-2.ch001
Bates, T. (1990). Entrepreneur human capital inputs and small business longevity. The Review of Economics and Statistics, 72(4), 551–559. https://doi.org/10.2307/2109594 DOI: https://doi.org/10.2307/2109594
Baum, T. (2008). Implications of hospitality and tourism labour markets for talent management strategies. International Journal of Contemporary Hospitality Management, 20(7), 720–729. https://doi.org/10.1108/09596110810897574 DOI: https://doi.org/10.1108/09596110810897574
Berens, W., Püthe, T., & Siemes, A. (2005). Ausgestaltung der Controllingsysteme im Mittelstand – Ergebnisse einer Untersuchung. Controlling & Management, 49(3), 186–191. https://doi.org/10.1007/BF0325501 DOI: https://doi.org/10.1007/BF03255010
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171 DOI: https://doi.org/10.2307/2490171
Beaver, W. H., McNichols, M. F., & Rhie, J.-W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93–122. https://doi.org/10.1007/s11142-004-6341-9 DOI: https://doi.org/10.1007/s11142-004-6341-9
Ben Jabeur, S. (2017). Bankruptcy prediction using partial least squares logistic regression. Journal of Retailing and Consumer Services, 36, 197–202. https://doi.org/10.1016/j.jretconser.2017.02.005 DOI: https://doi.org/10.1016/j.jretconser.2017.02.005
Berg, W. (2010). Einführung Tourismus: Überblick und Management. BWL Tourismus 8-2011. München: Oldenbourg. https://doi.org/10.1524/9783486711684 DOI: https://doi.org/10.1524/9783486711684
Berg, W. (2014). Einführung Tourismus: Überblick und Management. München: Oldenbourg Verlag. https://doi.org/10.1524/9783486711684.bm DOI: https://doi.org/10.1524/9783486779912
Berrone, P., Cruz, C., & Gomez-Mejia, L. R. (2012). Socioemotional wealth in family firms. Family Business Review, 25(3), 258–279. https://doi.org/10.1177/0894486511435355 DOI: https://doi.org/10.1177/0894486511435355
Betts, J., & Belhoul, D. (1987). The effectiveness of incorporating stability measures in company failure models. Journal of Business Finance & Accounting, 14(3), 323–334. https://doi.org/10.1111/j.1468-5957.1987.tb00098.x DOI: https://doi.org/10.1111/j.1468-5957.1987.tb00098.x
Beugelsdijk, S., Brakman, S., Garretsen, H., & van Marrewijk, C. (2013). International economics and business: Nations and firms in the global economy. Cambridge, UK: Cambridge University Press. ISBN: 9781009427647 DOI: https://doi.org/10.1017/CBO9781139568180
Blanco, O., Oliver-Alfonso, M., Irimia-Dieguez, A., & Wilson, N. (2015). Improving bankruptcy prediction in micro-entities by using nonlinear effects and non-financial variables. Czech Journal of Economics and Finance, 65(2), 144–166. ISSN: 0015-1920
Brisson-Banks, C. V. (2010). Managing change and transitions: A comparison of different models and their commonalities. Library Management, 31(4/5), 241–252. https://doi.org/10.1108/01435121011046317 DOI: https://doi.org/10.1108/01435121011046317
Brunninge, O., Nordqvist, M., & Wiklund, J. (2007). Corporate governance and strategic change in SMEs: The effects of ownership, board composition and top management teams. Small Business Economics, 29, 295–308. https://doi.org/10.1007/s11187-006-9021-2 DOI: https://doi.org/10.1007/s11187-006-9021-2
Calabrese, R., Marra, G., & Osmetti, S. A. (2016). Bankruptcy prediction of small and medium enterprises using a flexible binary generalized extreme value model. Journal of the Operational Research Society, 67(4), 604–615. https://doi.org/10.1057/jors.2015.64 DOI: https://doi.org/10.1057/jors.2015.64
Candera, M. (2024). Bankruptcy prediction model in service companies during the COVID-19 pandemic: A comparative analysis. European Journal of Theoretical and Applied Sciences, 2(2), 518–523. https://doi.org/10.59324/ejtas.2024.2(2).45 DOI: https://doi.org/10.59324/ejtas.2024.2(2).45
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537–569. https://doi.org/10.1007/s10679-004-6279-6 DOI: https://doi.org/10.1093/rof/8.4.537
Chen, Y. S., Lin, C. K., Lo, C. M., Chen, S. F., & Liao, Q. J. (2021). Comparable studies of financial bankruptcy prediction using advanced hybrid intelligent classification models to provide early warning in the electronics industry. Mathematics, 9(20), 2622. https://doi.org/10.3390/math9202622 DOI: https://doi.org/10.3390/math9202622
Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2), 248–265. https://doi.org/10.1111/j.2517-6161.1968.tb00724.x DOI: https://doi.org/10.1111/j.2517-6161.1968.tb00724.x
Cressy, R. (2006). Why do most firms die young? Small Business Economics, 26, 103–116. https://doi.org/10.1007/s11187-004-7813-9 DOI: https://doi.org/10.1007/s11187-004-7813-9
Crouch, G. I., & Ritchie, B. J. R. (1999). Tourism, competitiveness, and societal prosperity. Journal of Business Research, 44(3), 137–152. https://doi.org/10.1016/S0148-2963(97)00196-3 DOI: https://doi.org/10.1016/S0148-2963(97)00196-3
Cultrera, L., & Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101–119. https://doi.org/10.1108/RAF-06-2014-0059 DOI: https://doi.org/10.1108/RAF-06-2014-0059
Dawley, D. D., Hoffman, J. J., & Brockman, E. N. (2003). Do size and diversification type matter? An examination of post-bankruptcy outcomes. Journal of Managerial Issues, 15(4), 413–429. https://www.jstor.org/stable/40604443
Deimel, K. (2008). Stand der strategischen Planung in kleinen und mittleren Unternehmen (KMU) in der BRD. Zeitschrift für Planung, 19, 281–298. https://doi.org/10.1007/s00187-008-0061-4 DOI: https://doi.org/10.1007/s00187-008-0061-4
Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487–513. https://doi.org/10.1016/0377-2217(95)00070-4 DOI: https://doi.org/10.1016/0377-2217(95)00070-4
Doumpos, M., & Zopounidis, C. (1999). A multicriteria discrimination method for the prediction of financial distress: The case of Greece. Multinational Finance Journal, 3(2), 77–101. https://doi.org/10.17578/3-2-1 DOI: https://doi.org/10.17578/3-2-1
Dressler, J. B., & Tauer, L. (2015). Socioemotional wealth in the family farm. Agricultural Finance Review, 75(3), 403–415. https://doi.org/10.1108/AFR-12-2014-0039 DOI: https://doi.org/10.1108/AFR-12-2014-0039
Du Jardin, P. (2009). Bankruptcy prediction models: How to choose the most relevant variables? Bankers, Markets and Investors, 98(January-February), 39–46. https://mpra.ub.uni-muenchen.de/id/eprint/44380
Du Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Operational Research, 242(1), 286–303. https://doi.org/10.1016/j.ejor.2014.09.059 DOI: https://doi.org/10.1016/j.ejor.2014.09.059
Duller, C., Feldbauer-Durstmüller, B., & Hiebl, M. R. W. (2014). Funktionen des Controllings in Familienunternehmen: Die Informationsversorgungsfunktion wird weniger intensiv wahrgenommen als. Nicht-Familienunternehmen. Controller Magazin, 39(1), 26–29. https://www.researchgate.net/publication/259900684
Eisenbeis, R. A. (1977). Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32(3), 875–900. https://doi.org/10.1111/j.1540-6261.1977.tb01995.x DOI: https://doi.org/10.1111/j.1540-6261.1977.tb01995.x
El Kalak, I., & Hudson, R. (2016). The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model. International Review of Financial Analysis, 43, 135–145. https://doi.org/10.1016/j.irfa.2015.11.009 DOI: https://doi.org/10.1016/j.irfa.2015.11.009
Exler, M., & Situm, M. (2013). Früherkennung von Unternehmenskrisen: Systematische Einteilung von Krisenfrüherkennungsindikatoren zu den unterschiedlichen Krisenphasen eines Unternehmens. Krisen-, Sanierungs- und Insolvenzberatung, 9(4), 161–166. https://doi.org/10.37307/j.1868-7784.2013.04.05 DOI: https://doi.org/10.37307/j.1868-7784.2013.04.05
Exler, M., & Situm, M. (2014). Indikatoren zur Früherkennung von Unternehmenskrisen in der Beraterpraxis: Ansatzpunkte zur Etablierung eines internen Frühwarnsystems. Krisen-, Sanierungs- und Insolvenzberatung, 10(2), 53–59. https://doi.org/10.37307/j.1868-7784.2014.02.03 DOI: https://doi.org/10.37307/j.1868-7784.2014.02.03
Fernández-Gámez, M. A., Diéguez-Soto, J., Santos, J. A. C., & La Rosa, J. M. de. (2018). Bankruptcy prediction of family firms using combined classifiers. Journal of Scientific and Industrial Research, 78, 269–273. http://nopr.niscpr.res.in/handle/123456789/47159
Gedajlovic, E., Carney, M., Chrisman, J. J., & Kellermanns, F. W. (2012). The adolescence of family firm research. Journal of Management, 38(4), 1010–1037. https://doi.org/10.1177/0149206311429990 DOI: https://doi.org/10.1177/0149206311429990
Gottardo, P., & Moisello, A. M. (2017). Family firms, risk-taking and financial distress. Problems and Perspectives in Management, 15(2), 168–177. https://doi.org/10.21511/ppm.15(2-1).2017.01 DOI: https://doi.org/10.21511/ppm.15(2-1).2017.01
Gu, Z. (2002). Analyzing bankruptcy in the restaurant industry: A multiple discriminant model. International Journal of Hospitality Management, 21(1), 25–42. https://doi.org/10.1016/S0278-4319(01)00013-5 DOI: https://doi.org/10.1016/S0278-4319(01)00013-5
Gu, Z., & Gao, L. (2000). A multivariate model for predicting business failures of hospitality firms. Tourism and Hospitality Research, 2(1), 37–49. https://doi.org/10.1177/146735840000200108 DOI: https://doi.org/10.1177/146735840000200108
Gupta, J., Barzotto, M., & Khorasgani, A. (2018). Does size matter in predicting SMEs failure? International Journal of Finance & Economics, 23(4), 571–605. https://doi.org/10.1002/ijfe.1638 DOI: https://doi.org/10.1002/ijfe.1638
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (pp. 785–785). https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1074274
Hallmann, K., Müller, S., & Feiler, S. (2014). Destination competitiveness of winter sport resorts in the Alps: How sport tourists perceive destinations? Current Issues in Tourism, 17(4), 327–349. https://doi.org/10.1080/13683500.2012.720247 DOI: https://doi.org/10.1080/13683500.2012.720247
He, Y., & Kamath, R. (2005). Bankruptcy prediction of small firms in an individual industry with the help of mixed industry models. Asia-Pacific Journal of Accounting & Economics, 12(1), 19–36. https://doi.org/10.1080/16081625.2005.10510646 DOI: https://doi.org/10.1080/16081625.2005.10510646
Heesen, B., & Wieser-Linhart, V. (2018). Basiswissen Insolvenz: Schneller Einstieg in Insolvenzprävention und Risikomanagement. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-34714-7 DOI: https://doi.org/10.1007/978-3-658-18765-1
Hernandez Tinoco, M., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394–419. https://doi.org/10.1016/j.irfa.2013.02.013 DOI: https://doi.org/10.1016/j.irfa.2013.02.013
Herzog, S., Koziol, C., & Thabe, T. (2008). Optimal credit ratings. International Journal of Theoretical and Applied Finance, 11(2), 225–247. https://doi.org/10.1142/S0219024908004786 DOI: https://doi.org/10.1142/S0219024908004786
Hiebl, M., Feldbauer-Durstmüller, B., & Duller, C. (2013). Die Organisation des Controllings in österreichischen und bayerischen Familienunternehmen. Zeitschrift für KMU und Entrepreneurship, 61(1–2), 83–114. http://dx.doi.org/10.3790/zfke.61.1-2.83 DOI: https://doi.org/10.3790/zfke.61.1-2.83
Hill, C. W. L., Jones, G., & Schilling, M. A. (2014). Strategic management: Theory (11th ed., student ed.). Cengage Learning. https://thuvienso.hoasen.edu.vn/handle/123456789/9377
Hite, J. M., & Hesterly, W. S. (2001). The evolution of firm networks: From emergence to early growth of the firm. Strategic Management Journal, 22(3), 275-286. https://doi.org/10.1002/smj.156 DOI: https://doi.org/10.1002/smj.156
Hol, S. (2007). The influence of the business cycle on bankruptcy probability. International Transactions in Operational Research, 14(1), 75–90. https://doi.org/10.1111/j.1475-3995.2006.00576.x DOI: https://doi.org/10.1111/j.1475-3995.2006.00576.x
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. John Wiley & Sons, Inc. https://doi.org/10.1002/0471722146 DOI: https://doi.org/10.1002/0471722146
Hsieh, S. J. (1993). A note on the optimal cutoff point in bankruptcy prediction models. Journal of Business Finance & Accounting, 20(3), 457–464. https://doi.org/10.1111/j.1468-5957.1993.tb00268.x DOI: https://doi.org/10.1111/j.1468-5957.1993.tb00268.x
Huyhebaert, N., Gaeremynck, A., Roodhooft, F., & van de Gucht, L. M. (2000). New firm survival: The effects of start-up characteristics. Journal of Business Finance & Accounting, 27(5&6), 627–651. https://doi.org/10.1111/1468-5957.00328 DOI: https://doi.org/10.1111/1468-5957.00328
Jen?ová, S., Miškufová, M., & Letkovský, S. (2024). Is logistic regression reliable in bankruptcy prediction? Journal of Management and Business: Research and Practice, 16(1). https://journalmb.eu/JMB/article/view/89 DOI: https://doi.org/10.54933/jmbrp-2024-16-1-6
Jones, S. (2017). Corporate bankruptcy prediction: A high dimensional analysis. Review of Accounting Studies, 22(3), 1366–1422. https://doi.org/10.1007/s11142-017-9407-1 DOI: https://doi.org/10.1007/s11142-017-9407-1
Jusline. (2019a). Insolvenzordnung. Available at: https://www.jusline.at/gesetz/io/paragraf/66 [Accessed April 06, 2019].
Jusline. (2019b). Insolvenzordnung. Available at: https://www.jusline.at/gesetz/io/paragraf/67 [Accessed April 06, 2019].
Keasey, K., & Watson, R. (1987). Non-financial symptoms and the prediction of small company failure: A test of Argenti's hypotheses. Journal of Business Finance & Accounting, 14(3), 335–354. https://doi.org/10.1111/j.1468-5957.1987.tb00099.x DOI: https://doi.org/10.1111/j.1468-5957.1987.tb00099.x
Kim, H., & Gu, Z. (2006). Predicting restaurant bankruptcy: A logit model in comparison with a discriminant model. Journal of Hospitality & Tourism Research, 30(4), 474–493. https://doi.org/10.1177/1096348006290114 DOI: https://doi.org/10.1177/1096348006290114
Kim, H., & Gu, Z. (2010). A logistic regression analysis for predicting bankruptcy in the hospitality industry. The Journal of Hospitality Financial Management, 14(1), 17–34. https://doi.org/10.1080/10913211.2006.10653812 DOI: https://doi.org/10.1080/10913211.2006.10653812
Kim, S. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441–468. https://doi.org/10.1080/02642060802712848 DOI: https://doi.org/10.1080/02642060802712848
Kliestik, T., Mišanková, M., Valasková, K., & Svábová, L. (2021). Dependence of company size on factors influencing bankruptcy. SHS Web of Conferences, 74, 03028. https://doi.org/10.1051/shsconf/20207403028 DOI: https://doi.org/10.1051/shsconf/20219203028
Krappe, A., Goutas, L., & von Schlippe, A. (2011). The “family business brand”: An enquiry into the construction of the image of family businesses. Journal of Family Business Management, 1(1), 37-46. https://doi.org/10.1108/20436231111122272 DOI: https://doi.org/10.1108/20436231111122272
Kristanti, F. T., Rahayu, S., & Huda, A. N. (2016). The determinant of financial distress on Indonesian family firm. Procedia - Social and Behavioral Sciences, 219, 440–447. https://doi.org/10.1016/j.sbspro.2016.05.018 DOI: https://doi.org/10.1016/j.sbspro.2016.05.018
KSV1870. (2016). Insolvenzursachen 2015: Jedes zweite Unternehmen scheitert an der Chefetage. Available at: https://www.ksv.at/insolvenzursachen-2015 [Accessed June 24, 2019].
Laitinen, E. K. (1991). Financial ratios and different failure processes. Journal of Business Finance & Accounting, 18(5), 649–673. https://doi.org/10.1111/j.1468-5957.1991.tb00231.x DOI: https://doi.org/10.1111/j.1468-5957.1991.tb00231.x
Lau, A. H. L. (1987). A five-state financial distress prediction model. Journal of Accounting Research, 25(1), 127–138. https://doi.org/10.2307/2491262 DOI: https://doi.org/10.2307/2491262
Li, H., Xu, Y. H., & Yu, L. (2017). Predicting hospitality firm failure: Mixed sample modelling. International Journal of Contemporary Hospitality Management, 29(7), 1770–1792. https://doi.org/10.1108/IJCHM-03-2015-0092 DOI: https://doi.org/10.1108/IJCHM-03-2015-0092
Liang, D., Lu, C. C., Tsai, C. F., & Shih, G.-A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561–572. https://doi.org/10.1016/j.ejor.2016.01.012 DOI: https://doi.org/10.1016/j.ejor.2016.01.012
Lin, H. (2015). Default prediction model for SMEs: Evidence from UK market using financial ratios. International Journal of Business and Management, 10(2). https://doi.org/10.5539/ijbm.v10n2p81 DOI: https://doi.org/10.5539/ijbm.v10n2p81
Lin, S. M., Ansell, J., & Andreeva, G. (2012). Predicting default of a small business using different definitions of financial distress. Journal of the Operational Research Society, 63(4), 539–548. https://doi.org/10.1057/jors.2011.65 DOI: https://doi.org/10.1057/jors.2011.65
Lukason, O., & Hoffman, R. C. (2014). Firm bankruptcy probability and causes: An integrated study. International Journal of Business and Management, 9(11). https://doi.org/10.5539/ijbm.v9n11p80 DOI: https://doi.org/10.5539/ijbm.v9n11p80
Markt & Mittelstand. (2019). Immer weniger Pleiten. Available at: https://www.marktundmittelstand.de/finanzierung/immer-weniger-pleiten-1263271/ [Accessed May 19, 2019].
McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 159–173. https://doi.org/10.1002/1099- DOI: https://doi.org/10.1002/1099-1174(200009)9:3<159::AID-ISAF184>3.3.CO;2-3
(200009)9:3<159:AID-ISAF184>3.0.CO;2-C
Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 22(1), 380. https://doi.org/10.2307/2490719 DOI: https://doi.org/10.2307/2490719
Moroko, L., & Uncles, M. (2008). Characteristics of successful employer brands. Journal of Brand Management, 16, 160–175. https://doi.org/10.1057/bm.2008.4 DOI: https://doi.org/10.1057/bm.2008.4
Moulton, W. N., & Thomas, H. (1993). Bankruptcy as a deliberate strategy: Theoretical considerations and empirical evidence. Strategic Management Journal, 14(2), 125-135. https://doi.org/10.1002/smj.4250140204 DOI: https://doi.org/10.1002/smj.4250140204
Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187–221. https://doi.org/10.1016/0304-405X(84)90023-0 DOI: https://doi.org/10.1016/0304-405X(84)90023-0
North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge University Press. https://doi.org/10.1017/CBO9780511808678 DOI: https://doi.org/10.1017/CBO9780511808678
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395 DOI: https://doi.org/10.2307/2490395
Ooghe, H., & Prijcker, S. de. (2008). Failure processes and causes of company bankruptcy: A typology. Management Decision, 46(2), 223–242. https://doi.org/10.1108/00251740810854131 DOI: https://doi.org/10.1108/00251740810854131
Park, S. S., & Hancer, M. (2012). A comparative study of logit and artificial neural networks in predicting bankruptcy in the hospitality industry. Tourism Economics, 18(2), 311–338. https://doi.org/10.5367/te.2012.0113 DOI: https://doi.org/10.5367/te.2012.0113
Parsa, H., Self, J. T., Njite, D., & King, T. (2005). Why restaurants fail. Cornell Hotel and Restaurant Administration Quarterly, 46(3), 304–322. https://doi.org/10.1177/0010880405275598 DOI: https://doi.org/10.1177/0010880405275598
Parsa, H. G., Self, J., Sydnor-Busso, S., & Yoon, H. J. (2011). Why restaurants fail? Part II - The impact of affiliation, location, and size on restaurant failures: Results from a survival analysis. Journal of Foodservice Business Research, 14(4), 360–379. https://doi.org/10.1080/15378020.2011.625824 DOI: https://doi.org/10.1080/15378020.2011.625824
Parsa, H., van der Rest, J. P. I., Smith, S., Parsa, R., & Bujisic, M. (2015). Why restaurants fail? Part IV. Cornell Hospitality Quarterly, 56(1), 80–90. https://doi.org/10.1177/1938965514551959 DOI: https://doi.org/10.1177/1938965514551959
Patton, M. (2015). Qualitative research and evaluation methods (4th ed.). Sage Publications. ISBN: 978-1-4129-7212-3
Pechlaner, H., Fischer, E., & Bachinger, M. (Eds.). (2011). Kooperative Kernkompetenzen: Management von Netzwerken in Regionen und Destinationen. Springer-Verlag. ISBN: 978-1-4129-7212-3 DOI: https://doi.org/10.1007/978-3-8349-6536-3
Peters, M., & Frehse, J. (2011). Small and family businesses as service brands: An empirical analysis in the hotel. International Journal of Entrepreneurship and Small Business, 12(1), 28-43. https://doi.org/10.1504/IJESB.2011.037338 DOI: https://doi.org/10.1504/IJESB.2011.037338
Peters, M., Plaikner, A., Sparber, J., Kallmünzer, A., Heimerl, P., & Haid, M. (2019). Interne und externe Nachfolge im Tourismusunternehmen. Uibk.ac.at
Plaikner, A., Haid, M., Kallmuenzer, A., & Kraus, S. (2023). Employer branding in tourism: How to recruit, retain and motivate staff. Journal of Tourism and Services, 14(27), 1-21. https://doi.org/10.29036/jots.v14i27.666 DOI: https://doi.org/10.29036/jots.v14i27.666
Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26, 184–199. https://doi.org/10.1007/BF02755985 DOI: https://doi.org/10.1007/BF02755985
Pompe, P. P. M., & Bilderbeek, J. (2005). The prediction of bankruptcy of small- and medium-sized industrial firms. Journal of Business Venturing, 20(6), 847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003 DOI: https://doi.org/10.1016/j.jbusvent.2004.07.003
Purves, N., Niblock, S., & Sloan, K. (2016). Are organizations destined to fail? Management Research Review, 39(1), 62-81. https://doi.org/10.1108/MRR-07-2014-0153 DOI: https://doi.org/10.1108/MRR-07-2014-0153
Rautenstrauch, T., & Müller, C. (2005). Verständnis und Organisation des Controlling in kleinen und mittleren Unternehmen. Zeitschrift für Planung, 16, 189–209. https://doi.org/10.1007/BF02848578 DOI: https://doi.org/10.1007/BF02848578
Ross, S. A., Westerfield, R. W., & Jaffe, J. (2013). Corporate finance (10th ed.). McGraw-Hill. ISBN 1260091872
Sandra, C. U., Rokhmawati, A., & Lumbanraja, M. M. M. (2023). Perbandingan model prediksi kebangkrutan sektor barang konsumen primer Indonesia. Jurnal Visionida, 9(1), 17–31. https://doi.org/10.30997/jvs.v9i1.8497 DOI: https://doi.org/10.30997/jvs.v9i1.8497
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101–124. https://doi.org/10.1086/209665 DOI: https://doi.org/10.1086/209665
Sierke, B. R. A., Algermissen, J., & Brinkhoff, S. (2017). Outsourcing von Controlling als Option für den Mittelstand. Controlling & Management Review, 61(2), 22-33. https://doi.org/10.1007/s12176-016-0113-9 DOI: https://doi.org/10.1007/s12176-016-0113-9
Situm, M. (2015). The relevance of trend variables for the prediction of corporate crises and insolvencies. Zagreb International Review of Economics and Business, 18(1), 17-49. https://doi.org/10.1515/zireb-2015-0002 DOI: https://doi.org/10.1515/zireb-2015-0002
Situm, M. (2016). Finanzierungsstruktur optimieren: Praxisleitfaden für Unternehmer und Berater. NWB Verlag. ISBN: 978-3-482-77961-9
Situm, M. (2016). The divergence between corporate success and crisis: The separability of recovered and healthy companies. The Macrotheme Review, 5(4), 49–80. Available at: https://www.dr-situm.com/en/downloads/publikationen/ [Accessed October 20, 2024].
Stadler, M., Wakolbinger, F., & Haigner, S. D. (2016). Bedeutung des Tourismus für Tirol. Berechnung der Wertschöpfung, Beschäftigung und Einkommen - Juli 2016. Gesellschaft für angewandte Wirtschaftsforschung, Land Tirol. Available at: https://www.tirol.gv.at/fileadmin/themen/statistik-budget/statistik/downloads/PNr104_GAW_Bedeutung_Tourismus_fuer_Tirol.pdf [Accessed June 06, 2018].
Stanleigh, M. (2008). Effecting successful change management initiatives. Industrial and Commercial Training, 40(1), 34-37. https://doi.org/10.1108/00197850810841620 DOI: https://doi.org/10.1108/00197850810841620
Statistik Austria. (n.d.). StatCube – Statistik Datenbank. Retrieved November 26, 2024, from https://statcube.at/statistik.at/ext/statcube/jsf/tableView/tableView.xhtml#
Statistik Austria. (2023). Insolvenzen und Unternehmenseröffnungen Q4 2022 [PDF]. Retrieved November 26, 2024, from https://www.statistik.at/fileadmin/announcement/2023/02/20230209InsolvenzenQ42022.pdf
Statistik Austria. (2024). Insolvenzen und Registrierungen Q1 2024 [PDF]. Retrieved November 26, 2024, from https://www.statistik.at/fileadmin/announcement/2024/05/20240508InsolvenzenRegistrierungenQ12024.pdf
Taffler, R. (1982). Forecasting company failure in the UK using discriminant analysis and financial ratio data. Journal of the Royal Statistical Society. Series A (General), 145(3), 342. https://doi.org/10.2307/2981867 DOI: https://doi.org/10.2307/2981867
Taffler, R. (1983). The assessment of company solvency and performance using a statistical model. Accounting and Business Research, 13(52), 295–308. https://doi.org/10.1080/00014788.1983.9729767 DOI: https://doi.org/10.1080/00014788.1983.9729767
Tavlin, E. M., Moncarz, E. S., & Dumont, D. (1989). Financial failure in the hospitality industry. Hospitality Review, 7(1), 55–77. https://digitalcommons.fiu.edu/hospitalityreview/vol7/iss1/7
Wieprow, J., & Gawlik, A. (2021). The use of discriminant analysis to assess the risk of bankruptcy of enterprises in crisis conditions using the example of the tourism sector in Poland. Risks, 9(4), 78. https://doi.org/10.3390/risks9040078 DOI: https://doi.org/10.3390/risks9040078
Wilson, N., Wright, M., & Scholes, L. (2013). Family business survival and the role of boards. Entrepreneurship Theory and Practice, 37(6), 1369–1389. https://doi.org/10.1111/etap.12071 DOI: https://doi.org/10.1111/etap.12071
Wu, W. W. (2010). Beyond business failure prediction. Expert Systems with Applications, 37(3), 2371–2376. https://doi.org/10.1016/j.eswa.2009.07.056 DOI: https://doi.org/10.1016/j.eswa.2009.07.056
Wu, Y., Gaunt, C., & Gray, S. (2010). A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics, 6(1), 34–45. https://doi.org/10.1016/j.jcae.2010.04.002 DOI: https://doi.org/10.1016/j.jcae.2010.04.002
Yazdanfar, D. (2011). Predicting bankruptcy among SMEs: Evidence from Swedish firm-level data. International Journal of Entrepreneurship and Small Business, 14(4), 551–565. https://doi.org/10.1504/IJESB.2011.043475 DOI: https://doi.org/10.1504/IJESB.2011.043475
Youn, H., & Gu, Z. (2010). Predict US restaurant firm failures: The artificial neural network model versus logistic regression model. Tourism and Hospitality Research, 10(3), 171–187. https://doi.org/10.1057/thr.2010.2 DOI: https://doi.org/10.1057/thr.2010.2
Zanon, J., Scholl-Grissemann, U., Kallmuenzer, A., Kleinhansl, N., & Peters, M. (2019). How promoting a family firm image affects customer perception in the age of social media. Journal of Family Business Strategy, 10(1), 28–37. https://doi.org/10.1016/j.jfbs.2019.01.007 DOI: https://doi.org/10.1016/j.jfbs.2019.01.007
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. https://doi.org/10.2307/2490859 DOI: https://doi.org/10.2307/2490859
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alexander Plaikner, Marco Haid, Marcus Tänzel, Hüseyin Ya??zhan Kol

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 retained by the authors. Licensee BSC International Academy, Istanbul, Turkey. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).